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Economic dispatch models

A Basis for the electricity distribution and electricity market
A Used by all Independent System Operators (ISOs) in the US.
A In the simpler form, for direct currents, is formulated as a linear programming
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A For alternating currents (AC), it takes the form of power flow, a nonlinear
programming problem



Stochastic dispatch models

A Adoption of highly volatile renewable energy and randomness in demand requires
stochastic formulations

A Costoptimal decision in the presence of uncertain generation/demand
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Integrating wind samples in the economic dispatch model

A

A

The probability distributions are usually not known, and sampling is ugadf(nite in
practice.

Numerical weather forecasting is needed to obtain wind samples.

Approach 1 Wind farms bid energy based on their own, independent forecasts. The ISO
then considers all the scenarios in the ED model.

¢ Correlation among wind farms is lost

¢ An exhaustive list of scenarios leads to a gigantic ED problem. Not clear how to bundle
scenarios to reduce dimensionality.

Approach 2 Centralized forecast at the 1SO level
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Here we show that Approach 2 should be considered: ignoring or missing correlation
information leads to inefficient dispatch.



Motivating example—role of correlation in dispatch

> I

A very simplistic model: 3 generators (of which 2 wind farms and 1 thermal), 1
demand node, no line constraints

Power outputs of the wind farms af@; ~ N (w1,01) Ward\ (ws, 02) , and tl
correlationisp g4 =E[(W1 — w1)(Wy —ws)]/(0102) ).

How does correlation affect the optimal dispatch cost?

The optimization problem can be solved analytically, and the (expected) optimal
dispatch cost is:
ca(p) = cowd + (ctn — cw)((d — w1 — w2)®(d, 03 + 2po109 + 05)+
o*¢(d, 07 + 2po109 + 03))

Here® and are the cumulative distribution and probability distribution
functions of W = Wy + W,

The optimal dispatch cost is amcreasing functiorof the correlationp !



Motivating example- continued *——— — —
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In both cases higher operating costs are obtained over time:
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Also leads to arbitrage opportunities in the power market for participants that
account or have better approximation of the correlation.



A framework for stochastic economic dispatch

A What about realworld large-scale power grid systems?

A Analytical analysis of such complex systems is virtually impossible.
A Computer simulations are needed.

A Weather forecasting is integrated with decision making under the same
computational framework.

\ >\

Wind samples using WRF, resampling using shrinkage estimators (more later).

A PIPS (Petra et alparallel optimization solver for high performance computing
platforms (BG/P, BG/Q, Cray XE6, XC30, XK7).



Wind forecast

A Weather forecasting @ Argonne (E. Constantinescu)

N

-120 -110 -100 -90 -80
° Longitude W

(|

#1

N
(=)

%]
&)

° Latitude N

W
o

N
(%))

A  WRF (Weather Research and Forecasting) Model
¢ Reailtime gridnested simulation using atmospheric models
¢ Done on high performance computing platforms but still computationally expensive
¢ Only 30 samples or less can be obtained in times compatibleopéhationalpractice



Covariance estimation

A A small number of samples may not accurately capture the uncertainty.

A We assume Gaussian distribution of wind speeds and resample to generate more
samples.
A Thestatistical problem: estimate the covariance matrix Q a randedinpensional
vectorbasedon a number of rsamples
¢ X =|[z1;79; - xp] € RP*™ are the samples
¢ Letx = (x1+ T2+ ...+ xp)/n denote the sample mean
¢ An estimator of the covariance matrix would then be
1| _ % y
S:E Z(xix)-(xix)] € RP*P

=1

A Estimating covariance matrix is an issue in this situation since the number of
samples (n=30) is smaller than the number of random variables (p=0(100)).
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Shrinkage estimators

A Estimators of the form
Se=p1-I+p2-5
A Where the parameters are chosen so that

min [ [||Q — Se|]

P1,P2
A Rao BlackwelledoitWolf (2004) estimator

SRBLW = PRBLW - Inwp + (1 — prBLW) - S, where

nT—LQ 'tr(82)+tr2(8)
tr2(S)7 ? 1
(n+2)- [br(52) ~ 22

PRBLW = min (
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Validationon an Autoregressive process (AR)

SEB

SF{BLW

SEp is the empirical Bayesian estimator and Sgy is Stein’s SVD decomposition-based estimator.
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Stochastic ED as (dual) bleekgular LPs

Extensive form

T

min cyryp + cjx1 + ¢c3r2 + ... +  CNyIN

S.t. ACCO — b(),
Thxg + Wiz = by,
T>x + Waxg = bo,
Tnxg + Wyzy = by,
xg >0, x1>20, x92>0, ..., xny=>0.

A Easy to build practical instances having billions of decision variables
and constraints
C Requires distributednemory computers
A Realtime solution needed ipower grid applications
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Interior-point optimization solver- PIPS

Convex quadratic problem IPM Linear System
Min ExTQx+ C X +L A & g
2 - grhs
subj. to. AX=D e A O %/ ¥
X2 0

2 solves per IPM iteration
- predictor direction
- corrector direction
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Special Structure of KKT System (Arrshaped)
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Block Elimination

K4 By Az 1
KN BN AZN B N
i Bir BJZ\; KO 1 L AZO il i T0 |

Multiply rowiby —BY K~!  and sum all the rows to obtain

N N
(KO -> BiTKZ.lBZ-> Azg=ro— » BI'K;'r,

The matrixC := K, — Y-, BT K; ' B, is thec®ohlement
of the diagonak, ..., Ky block.
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Parallel Solution Procedure for KKT System

L.

2.

Calculate BI' K, 'B;, i=1,...,N (“Compute S.C.”)

Form C = KO — Z’f\il B?K@_lBZ (“F()rm S.C.”)

. Factorize C' = LoDyL{ (“Factor S.C.”)

Solve Azg = C~1(rg — Zfll quTKz'_lri)
Solve Az; = KZ._l(Bf,;Azo —ri), t=1,...,N

Steps 1 and 5 trivially parallel
I AnScenbmased decompositiono

Extra care needed for computational bottlenecks 2, 3, and 5: multithreaded
or GPU accelerated linear algebra, tuned coomunication, etc.

Realtime is achieved using with an augmented incomplete factorization
coupled with BICGStab (to speed-up 1).
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PIPS performance (Petra et al., 2013)

A C++ code, MPI+OpenMP, runs on a variety of high performance computing
platforms: IBM BG/P-Q (Argonne), Cray XK7 (Oak Ridge), Cray XE6 and

XC30 (Swiss National Computing Centre)

PIPS-IPM Weak Scaling on XK7 "Titan"
(up to 32k MPI Processes, 128k Threads, k=1,024)

2048 nodes 4096 nodes 8192 nodes 16384 nodes
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Parallel efficiency

The largest instance has 4.08 billion decision variables and 4.12 billion constral

v
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SI mul ati ons of St ate of | |

A The network consists of 2522 lines, 1908 buses, 870 demand buses, 225
generators, of which 32 are wind farms.

A Some of the wind farms are hypothetical and replace coal generators.
A2AYR aAyaualfttSRéE OFLIOAGE A& mMT:d | R

Aw.[2 O20FNAFYOS YIFIGNRE 06O2NMNIPED Ta
¢ Dispatch cost
¢ Aheadtealtimeprices

A Both dispatch cost and the prices are random under the resampling scheme,
therefore we compute confidence intervals.

A A problem with 256 scenarios has a little bit less than 1 million variables and 1
million constraints.

A!'&ASR ! NH2YySQ&a . Dkt AGLYUNBLIARE | yR
confidence intervals.
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Dispatch cost correlation vs independent resampling
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A The smallest gap, 1.42% or $10,967 that occurs for batches of 256 scenarios c:
potentially add up to approx. $100 million over a year.

A The gap does not seem to close as the number of scenarios increases.
A About 256 scenarios seem to offer a decent approximation (std. dev. is 0.36%)
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Prices- correlation vs independent resampling

95% confidence intervals for prices at a typical bus
Ahead prices
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A As expected from the previous slide, the prices computed with correlation
information are higher than the prices computed with no correlation.

> I

information.

Realtimeprices are about the same magnitude.
Opportunities for market arbitrage for players with better covariance
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Conclusions

A Improper correlation estimation leads to inefficient pricing and higher dispatch
costs, negatively impacting social welfare.

A We advocate for centralized weather forecasting in power grid dispatch.

A Better covariance estimation potentially leads to more efficient pricing.

A Details inC.PetraE.D.NinpV.ZavalaM.Anitescud h y (i K
O2 @I NAI yOS SadAYlGAZ2Yy A
Power Systems.



Thankyou for your attention!

Any questions?
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Additional material
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Empirical Bayesian estimator

A Again, n<<p

Sgp = ' 5 -mEB-I—i—L-SERpo, where
p-n n—+1
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Stein”s SVD-bdsedeestimgtos si t I on

S—U.Y.U'.
Y =diag(o1,02,...,0p) € RP*P.
i = nai i=1.2.....p.
n—p+1+2-0;- ’E:l!k#fﬁ
A = diag (1,62, ..., dp) € RP7P

SSH:U-ﬂ-UtEgﬁPXP.
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